Quantum Latent Semantic Analysis

نویسندگان

  • Fabio A. González
  • Juan C. Caicedo
چکیده

The main goal of this paper is to explore latent topic analysis (LTA), in the context of quantum information retrieval. LTA is a valuable technique for document analysis and representation, which has been extensively used in information retrieval and machine learning. Different LTA techniques have been proposed, some based on geometrical modeling (such as latent semantic analysis, LSA) and others based on a strong statistical foundation. However, these two different approaches are not usually mixed. Quantum information retrieval has the remarkable virtue of combining both geometry and probability in a common principled framework. We built on this quantum framework to propose a new LTA method, which has a clear geometrical motivation but also supports a well-founded probabilistic interpretation. An initial exploratory experimentation was performed on three standard data sets. The results show that the proposed method outperforms LSA on two of the three datasets. These results suggests that the quantum-motivated representation is an alternative for geometrical latent topic modeling worthy of further exploration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Query expansion based on relevance feedback and latent semantic analysis

Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...

متن کامل

Latent Semantic Analysis of the Languages of Life

We use Latent Semantic Analysis as a basis to study the languages of life. Using this approach we derive techniques to discover latent relationships between organisms such as significant motifs and evolutionary features. Doubly Singular Value Decomposition is defined and the significance of this adaptation is demonstrated by finding a phylogeny of twenty prokaryotes. Minimal Killer Words are us...

متن کامل

Semantic Distillation: A Method for Clustering Objects by their Contextual Specificity

Techniques for data-mining, latent semantic analysis, contextual search of databases, etc. have long ago been developed by computer scientists working on information retrieval (IR). Experimental scientists, from all disciplines, having to analyse large collections of raw experimental data (astronomical, physical, biological, etc.) have developed powerful methods for their statistical analysis a...

متن کامل

Spectral Composition of Semantic Spaces

Spectral theory in mathematics is key to the success of as diverse application domains as quantum mechanics and latent semantic indexing, both relying on eigenvalue decomposition for the localization of their respective entities in observation space. This points at some implicit “energy” inherent in semantics and in need of quantification. We show how the structure of atomic emission spectra, a...

متن کامل

lsemantica: A Stata Command for Text Similarity based on Latent Semantic Analysis

The lsemantica command, presented in this paper, implements Latent Semantic Analysis in Stata. Latent Semantic Analysis is a machine learning algorithm for word and text similarity comparison. Latent Semantic Analysis uses Truncated Singular Value Decomposition to derive the hidden semantic relationships between words and texts. lsemantica provides a simple command for Latent Semantic Analysis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011